Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.905
Filter
1.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607919

ABSTRACT

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Subject(s)
Antigens, Neoplasm , Carcinogenesis , Macrophages, Peritoneal , Animals , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Female , Mice , Carcinogenesis/pathology , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Cross-Priming/immunology , Cell Line, Tumor , Phagosomes/metabolism , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Actins/metabolism
2.
Theranostics ; 14(6): 2526-2543, 2024.
Article in English | MEDLINE | ID: mdl-38646640

ABSTRACT

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Subject(s)
Clodronic Acid , Lung , Macrophages, Peritoneal , Nanoparticles , Animals , Clodronic Acid/pharmacology , Clodronic Acid/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Lung/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/drug effects , Macrophages, Alveolar/metabolism , RNA, Small Interfering/administration & dosage , GATA6 Transcription Factor/metabolism , Liposomes , Mice, Inbred C57BL , Carbocyanines/chemistry , Cell Movement/drug effects , Flow Cytometry
3.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38520688

ABSTRACT

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Subject(s)
Cholera Toxin , Endoplasmic Reticulum Stress , Endoribonucleases , Interleukin-1beta , Protein Serine-Threonine Kinases , Interleukin-1beta/metabolism , Animals , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress/drug effects , Mice , Cholera Toxin/pharmacology , Cholera Toxin/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Lipopolysaccharides/pharmacology , Endoplasmic Reticulum/metabolism
4.
Trends Immunol ; 44(2): 129-145, 2023 02.
Article in English | MEDLINE | ID: mdl-36623953

ABSTRACT

There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.


Subject(s)
GATA6 Transcription Factor , Macrophages, Peritoneal , Mammals , Animals , GATA6 Transcription Factor/immunology , Macrophages, Peritoneal/immunology , Mammals/immunology , Phagocytes/immunology , Sea Urchins/immunology
5.
J Immunol ; 208(5): 1204-1213, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35173034

ABSTRACT

Pancreatic ß cell apoptosis is important in the pathogenesis of type 2 diabetes mellitus (T2DM). Generally, apoptotic ß cells are phagocytosed by macrophages in a process known as "efferocytosis." Efferocytosis is critical to the resolution of inflammation and is impaired in T2DM. Advanced glycation end products (AGEs), which are increased in T2DM, are known to suppress phagocytosis function in macrophages. In this study, we found that AGEs inhibited efferocytosis of apoptotic ß cells by primary peritoneal macrophages in C57BL/6J mice or mouse macrophage cell line Raw264.7. Mechanistically, AGEs inhibit efferocytosis by blocking Ras-related C3 botulinum toxin substrate 1 activity and cytoskeletal rearrangement through receptor for advanced glycation end products/ras homolog family member A/Rho kinase signaling in macrophages. Furthermore, it was observed that AGEs decreased the secretion of anti-inflammatory factors and promoted the proinflammatory ones to modulate the inflammation function of efferocytosis. Taken together, our results indicate that AGEs inhibit efferocytosis through binding to receptor for advanced glycation end products and activating ras homolog family member A/Rho kinase signaling, thereby inhibiting the anti-inflammatory function of efferocytosis.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Glycation End Products, Advanced/metabolism , Insulin-Secreting Cells/metabolism , Macrophages, Peritoneal/immunology , Phagocytosis/physiology , Receptor for Advanced Glycation End Products/metabolism , Animals , Apoptosis/physiology , Botulinum Toxins/metabolism , Cell Line , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Signal Transduction/physiology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
6.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163089

ABSTRACT

Lipopolysaccharide (LPS)-induced endotoxemia induces an acute systemic inflammatory response that mimics some important features of sepsis, the disease with the highest mortality rate worldwide. In this work, we have analyzed a murine model of endotoxemia based on a single intraperitoneal injection of 5 mg/kg of LPS. We took advantage of galectin-3 (Gal3) knockout mice and found that the absence of Gal3 decreased the mortality rate oflethal endotoxemia in the first 80 h after the administration of LPS, along with a reduction in the tissular damage in several organs measured by electron microscopy. Using flow cytometry, we demonstrated that, in control conditions, peripheral immune cells, especially monocytes, exhibited high levels of Gal3, which were early depleted in response to LPS injection, thus suggesting Gal3 release under endotoxemia conditions. However, serum levels of Gal3 early decreased in response to LPS challenge (1 h), an indication that Gal3 may be extravasated to peripheral organs. Indeed, analysis of Gal3 in peripheral organs revealed a robust up-regulation of Gal3 36 h after LPS injection. Taken together, these results demonstrate the important role that Gal3 could play in the development of systemic inflammation, a well-established feature of sepsis, thus opening new and promising therapeutic options for these harmful conditions.


Subject(s)
Disease Models, Animal , Endotoxemia/pathology , Galectin 3/physiology , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages, Peritoneal/immunology , Animals , Endotoxemia/etiology , Endotoxemia/metabolism , Inflammation/etiology , Inflammation/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163105

ABSTRACT

To obtain a more detailed picture of macrophage (MΦ) biology, in the current study, we analyzed the transcriptome of mouse peritoneal MΦs by RNA-seq and PCR-based transcriptomics. The results show that peritoneal MΦs, based on mRNA content, under non-inflammatory conditions produce large amounts of a number of antimicrobial proteins such as lysozyme and several complement components. They were also found to be potent producers of several chemokines, including platelet factor 4 (PF4), Ccl6, Ccl9, Cxcl13, and Ccl24, and to express high levels of both TGF-ß1 and TGF-ß2. The liver is considered to be the main producer of most complement and coagulation components. However, we can now show that MΦs are also important sources of such compounds including C1qA, C1qB, C1qC, properdin, C4a, factor H, ficolin, and coagulation factor FV. In addition, FX, FVII, and complement factor B were expressed by the MΦs, altogether indicating that MΦs are important local players in both the complement and coagulation systems. For comparison, we analyzed human peripheral blood monocytes. We show that the human monocytes shared many characteristics with the mouse peritoneal MΦs but that there were also many major differences. Similar to the mouse peritoneal MΦs, the most highly expressed transcript in the monocytes was lysozyme, and high levels of both properdin and ficolin were observed. However, with regard to connective tissue components, such as fibronectin, lubricin, syndecan 3, and extracellular matrix protein 1, which were highly expressed by the peritoneal MΦs, the monocytes almost totally lacked transcripts. In contrast, monocytes expressed high levels of MHC Class II, whereas the peritoneal MΦs showed very low levels of these antigen-presenting molecules. Altogether, the present study provides a novel view of the phenotype of the major MΦ subpopulation in the mouse peritoneum and the large peritoneal MΦs and places the transcriptome profile of the peritoneal MΦs in a broader context, including a comparison of the peritoneal MΦ transcriptome with that of human peripheral blood monocytes and the liver.


Subject(s)
Blood Coagulation Factors/metabolism , Blood Coagulation , Complement System Proteins/immunology , Liver/immunology , Macrophages, Peritoneal/immunology , Monocytes/immunology , Transcriptome , Animals , Complement System Proteins/metabolism , Female , Liver/metabolism , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred BALB C , Monocytes/metabolism
8.
Front Immunol ; 13: 801182, 2022.
Article in English | MEDLINE | ID: mdl-35154115

ABSTRACT

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.


Subject(s)
Interferon-alpha/metabolism , Interferon-beta/metabolism , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Macrophages, Peritoneal/immunology , Signal Transduction/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , eIF-2 Kinase/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Female , Gene Expression , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Gene Knockout Techniques , Interferon-alpha/genetics , Interferon-beta/genetics , Leishmaniasis, Visceral/parasitology , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects , Signal Transduction/immunology , Sulfonamides/pharmacology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/immunology , eIF-2 Kinase/genetics
9.
Int Immunopharmacol ; 104: 108513, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35008006

ABSTRACT

The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1ß (IL-1ß) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP). We demonstrated that CTRP9 markedly augmented the activation of the NLRP3 inflammasome, as shown by increased mature IL-1ß secretion, triggering ASC speck formation and promoting pyroptosis. Mechanistically, CTRP9 increased the levels of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). Suppressing ROS with N-acetylcysteine (NAC) or interfering with NOX2 by small interfering RNA weakened the promoting effect of CTRP9 on the NLRP3 inflammasome. Furthermore, NLRP3 inflammasome activation, pyroptosis and secretion of mature IL-1ß were significantly decreased in macrophages from CTRP9-KO mice compared to those from WT mice with the same treatment. In vivo, we established a sepsis model by intraperitoneal injection of LPS into WT and CTRP9-KO mice. CTRP9 knockout improved the survival rates of the septic mice and attenuated NLRP3 inflammasome-mediated inflammation. In conclusion, our study indicates that CTRP9 aggravates LPS-induced inflammation by promoting NLRP3 inflammasome activation via the NOX2/ROS pathway. CTRP9 could be a promising target for NLRP3 inflammasome-driven inflammatory diseases.


Subject(s)
Adiponectin/immunology , Glycoproteins/immunology , Inflammasomes/immunology , Inflammation/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Adiponectin/genetics , Animals , Female , Glycoproteins/genetics , Inflammasomes/genetics , Inflammation/chemically induced , Inflammation/genetics , Interleukin-1beta/blood , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Lipopolysaccharides , Macrophages, Peritoneal/immunology , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2/genetics , NADPH Oxidase 2/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species/immunology
10.
Cell Immunol ; 372: 104483, 2022 02.
Article in English | MEDLINE | ID: mdl-35085880

ABSTRACT

The occurring in SR-A/CD204- or CD36-deficient mice increased susceptibility to infections with Staphylococcus aureus (Sa) had traditionally been ascribed to the impairment of macrophage-mediated phagocytosis, which is, however, inconsistent with low effectiveness of unopsonized Sa killing within macrophages and redundant roles of both receptors in this process. We have found that Sa-stimulated cytokine production in mouse macrophages seems to be exclusively mediated by TLR2, mainly from within endosomes in response to Sa-derived lipoteichoic acid. By driving endocytic trafficking of TLR2 and its ligands through the clathrin-dependent pathway, CD36 and SR-A sensitize macrophages to activation by Sa as well as regulate the type and amount of cytokines produced. Additionally, upon direct Sa binding, both receptors autonomously generate anti-inflammatory signaling. Consequently, the delayed induction of acute inflammation in knockout mice may allow for the initial, uncontrolled multiplication of bacteria, stimulating excessive, septic shock-inducing production of inflammatory cytokines in later stages of infection.


Subject(s)
CD36 Antigens/immunology , Cytokines/biosynthesis , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/microbiology , Scavenger Receptors, Class A/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Animals , CD36 Antigens/deficiency , CD36 Antigens/genetics , Endocytosis/immunology , Ligands , Lipopolysaccharide Receptors/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Pattern Recognition/immunology , Scavenger Receptors, Class A/deficiency , Scavenger Receptors, Class A/genetics , Signal Transduction/immunology , Toll-Like Receptor 2/immunology
11.
Dev Comp Immunol ; 127: 104292, 2022 02.
Article in English | MEDLINE | ID: mdl-34656643

ABSTRACT

Vibrio harveyi is a zoonotic pathogen that can infect humans through wounds and cause severe inflammatory responses. Previous studies have reported that the Toll like receptors (TLR) mediated MAPK, AKT and NF-κB signaling pathways are involved in innate immune system resistance to pathogen invasion. However, the molecular mechanism of these pathways, as well as their involvement in V. harveyi infection remains elusive. This study established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blotting, ELISA, RT-qPCR, immunofluorescence, inhibition assays, were used to explore the roles of TLRs, MAPK, AKT and NF-κB signaling pathways in V. harveyi-induced inflammatory responses. ELISA assays showed that V. harveyi infection triggered proinflammatory cytokines secretion in PMs. RT-qPCR and inhibition assays showed that TLR2 participated in V. harveyi infection and up-regulated the proinflammatory cytokines secretion in murine PMs. Western blotting data showed that the phosphorylation of p38, JNK, AKT, and NF-κB p65 were significantly increased partly mediated by TLR2. In addition, immunofluorescence assays revealed that the NF-κB p65 translocated into nucleus in response to V. harveyi infection. The secretion of IL-1ß, IL-6, IL-12, and TNF-α were considerably reduced when the p38 MAPK and NF-κB signaling pathways were blocked, whereas blocking of AKT significantly increased the expression of IL-1ß, IL-6, IL-12, and TNF-α. These findings indicate that V. harveyi infection induces inflammatory responses in murine PMs via activation of p38 MAPK and NF-κB pathways, which are partly mediated by TLR2, but are inhibited by PI3K/AKT pathways.


Subject(s)
Cytokines , Macrophages, Peritoneal , NF-kappa B , Vibrio Infections , p38 Mitogen-Activated Protein Kinases , Animals , Cytokines/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/microbiology , Mice , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vibrio , Vibrio Infections/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Front Immunol ; 12: 758052, 2021.
Article in English | MEDLINE | ID: mdl-34899708

ABSTRACT

Hepatopathy is frequently observed in patients with severe malaria but its pathogenesis remains unclear. Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses, and exhibit pivotal roles during Plasmodium spp. infection. Here, we analyzed the impact of blockage of galectin-receptor interactions by treatment with alpha (α)-lactose on liver immunopathology during the erythrocytic stage of malaria in mice infected with Plasmodium berghei ANKA (PbANKA). Our results found that compared with PbANKA-infected mice (malarial mice), blockage of galectin-receptor interactions led to decreased host survival rate and increased peripheral blood parasitemia; exacerbated liver pathology, increased numbers of CD68+ macrophages and apoptotic cells, and increased parasite burden in the livers on days 5 and 7 post infection (p.i.) as well as increased mRNA expression levels of galectin-9 (Gal-9) and its receptor, the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), interferon (IFN)α, IFNγ, and the triggering receptor expressed on myeloid cells (TREM)-1 in the livers or spleens of PbANKA-infected mice on day 7 p.i. Observed by transmission electron microscopy, the peritoneal macrophages isolated from malarial mice with α-lactose treatment had more pseudopodia than those from malarial mice. Measured by using quantitative real-time reverse transcription-polymerase chain reaction assay, the mRNA expression levels of Gal-9, IFNα, IFNß, IFNγ, and TREM-1 were increased in the peritoneal macrophages isolated from malarial mice with α-lactose treatment in comparison of those from malarial mice. Furthermore, significant positive correlations existed between the mRNA levels of Gal-9 and Tim-3/IFNγ/TREM-1 in both the livers and the peritoneal macrophages, and between Gal-9 and Tim-3/TREM-1 in the spleens of malarial mice; significant positive correlations existed between the mRNA levels of Gal-9 and IFNγ in the livers and between Gal-9 and IFNα in the peritoneal macrophages from malarial mice treated with α-lactose. Our data suggest a potential role of galectin-receptor interactions in limiting liver inflammatory response and parasite proliferation by down-regulating the expressions of IFNα, IFNγ, and TREM-1 during PbANKA infection.


Subject(s)
Erythrocytes/parasitology , Galectins/physiology , Liver/pathology , Malaria/pathology , Parasitemia/pathology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Female , Galectins/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Lactose/pharmacology , Lactose/toxicity , Liver/parasitology , Lung/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/ultrastructure , Malaria/blood , Mice , Plasmodium berghei/growth & development , Pseudopodia/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Immunologic/biosynthesis , Receptors, Immunologic/genetics , Triggering Receptor Expressed on Myeloid Cells-1/biosynthesis , Triggering Receptor Expressed on Myeloid Cells-1/genetics
13.
Front Immunol ; 12: 734966, 2021.
Article in English | MEDLINE | ID: mdl-34925319

ABSTRACT

NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription. Our results show that NOTCH4 reprograms the macrophage response to IFN-γ by favoring STAT3 versus STAT1 phosphorylation without affecting their expression levels. This lower activation of STAT1 results in diminished transcriptional activity and expression of STAT1-dependent genes, including IRF1, SOCS1 and CXCL10. In macrophages, NOTCH4 inhibits the canonical NOTCH signaling pathway induced by LPS; however, it can reverse the inhibition exerted by IFN-γ on NOTCH signaling, favoring the expression of NOTCH-target genes, such as Hes1. Indeed, HES1 seems to mediate, at least in part, the enhancement of STAT3 activation by NOTCH4. NOTCH4 also affects TLR signaling by interfering with NF-κB transcriptional activity. This effect could be mediated by the diminished activation of STAT1. These results provide new insights into the mechanisms by which NOTCH, TLR and IFN-γ signal pathways are integrated to modulate macrophage-specific effector functions and reveal NOTCH4 acting as a new regulatory element in the control of macrophage activation that could be used as a target for the treatment of pathologies caused by an excess of inflammation.


Subject(s)
Interferon-gamma/metabolism , Macrophage Activation/genetics , Macrophages, Peritoneal/immunology , Receptor, Notch4/metabolism , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Animals , Blood Donors , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , RAW 264.7 Cells , Receptor, Notch4/genetics , Signal Transduction/drug effects , Transfection
14.
Nat Commun ; 12(1): 7294, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911964

ABSTRACT

Recruitment of bone marrow derived monocytes via bloodstream and their subsequent conversion to CX3CR1+ macrophages in response to intestinal injury is dependent on CCR2, Nr4a1, and the microbiome. This process is critical for proper tissue repair; however, GATA6+ peritoneal cavity macrophages might represent an alternative, more readily available source of mature and functional myeloid cells at the damaged intestinal locations. Here we show, using spinning-disk confocal microscopy, that large F4/80hiGATA6+ peritoneal cavity macrophages promptly accumulate at damaged intestinal sites upon intestinal thermal injury and upon dextran sodium sulfate induced colitis in mice via a direct route from the peritoneal cavity. In contrast to bloodstream derived monocytes/macrophages, cavity macrophages do not depend on CCR2, Nr4a1 or the microbiome for recruitment, but rather on the ATP-release and exposed hyaluronan at the site of injury. They participate in the removal of necrotic cells, revascularization and collagen deposition and thus resolution of tissue damage. In summary, peritoneal cavity macrophages represent a rapid alternative route of intestinal tissue repair to traditional monocyte-derived macrophages.


Subject(s)
GATA6 Transcription Factor/immunology , Inflammatory Bowel Diseases/immunology , Macrophages, Peritoneal/immunology , Peritoneum/immunology , Animals , GATA6 Transcription Factor/genetics , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/physiopathology , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Receptors, CCR2/genetics , Receptors, CCR2/immunology , Regeneration
15.
Sci Rep ; 11(1): 24380, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934125

ABSTRACT

The Na+/H+ exchanger isoform 1 (NHE-1) attracts ongoing attention as a validated drug target for the management of cardiovascular and ocular diseases owing to cytoprotective, anti-ischemic and anti-inflammatory properties of NHE-1 inhibitors. Herein we report novel NHE-1 inhibitors realized via functionalization of N1-alkyl quinazoline-2,4(1H,3H)-dione and quinazoline-4(3H)-one with N-acylguanidine or 3-acyl(5-amino-1,2,4-triazole) side chain. Lead compounds show activity in a nanomolar range. Their pharmacophoric features were elucidated with neural network modeling. Several compounds combine NHE-1 inhibition with antiplatelet activity. Compound 6b reduces intraocular pressure in rats and effectively inhibits the formation of glycated proteins. Compounds 3e and 3i inhibit pro-inflammatory activation of murine macrophages, LPS-induced interleukin-6 secretion and also exhibit antidepressant activity similar to amiloride. Hence, novel compounds represent an interesting starting point for the development of agents against cardiovascular diseases, thrombotic events, excessive inflammation, long-term diabetic complications and glaucoma.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Inflammation/drug therapy , Macrophages, Peritoneal/drug effects , Quinazolines/chemistry , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Female , Inflammation/immunology , Inflammation/pathology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Rats
16.
Immunohorizons ; 5(12): 994-1007, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34965966

ABSTRACT

Monocytes and macrophages are early sentinels of infection. The peritoneum contains two resident populations: large and small peritoneal macrophages (LPMs and SPMs). While LPMs self-renew, circulating monocytes enter the peritoneum and differentiate into SPMs. We lack information on the dynamics of monocyte-macrophage trafficking during abdominal sepsis, reflecting an important knowledge gap. In this study, we characterize the presence of LPMs, SPMs, and monocytes in the peritoneum of mice following cecal ligation and puncture (CLP)-induced sepsis and sham surgery. LPMs rapidly disappeared from the peritoneum and were scarce at 18-66 h after CLP or sham surgery. By 14 d, LPMs returned for sham mice, but they remained scarce in CLP mice. Depletion of LPMs from the peritoneum of CD11b-DTR mice greatly increased animal mortality. These data imply that LPMs are critical for sepsis survival. Monocytes rapidly infiltrated the peritoneum and were abundant at 18-66 h after CLP or sham surgery. Surprisingly, SPMs only increased at 14 d post-CLP. Therefore, monocytes may defend hosts from acute sepsis mortality without generating SPMs. More monocytes were present in mice predicted to survive sepsis versus mice predicted to die. However, altering monocyte numbers via CCR2 deficiency or adoptive transfer did not significantly affect animal survival. We reasoned that animals destined to survive sepsis may exhibit a different monocyte phenotype, rather than merely enhanced numbers. Indeed, mice predicted to survive possessed more CD31+, CXCR4hi transitional premonocytes in their abdomen. Inhibition of CXCL12-CXCR4 signaling via AMD3100 exacerbated sepsis. These data imply that recruitment of transitional premonocytes to the abdomen promotes sepsis survival.


Subject(s)
Macrophages, Peritoneal/pathology , Sepsis/mortality , Sepsis/pathology , Animals , Benzylamines/pharmacology , Chemokine CXCL12/drug effects , Cyclams/pharmacology , Disease Models, Animal , Female , Ligation , Macrophages/metabolism , Macrophages, Peritoneal/immunology , Male , Mice , Monocytes/metabolism , Receptors, CXCR4/drug effects , Sepsis/drug therapy , Sepsis/immunology
17.
Front Immunol ; 12: 753092, 2021.
Article in English | MEDLINE | ID: mdl-34745126

ABSTRACT

Increasing evidence support that cellular amino acid metabolism shapes the fate of immune cells; however, whether aspartate metabolism dictates macrophage function is still enigmatic. Here, we found that the metabolites in aspartate metabolism are depleted in lipopolysaccharide (LPS) plus interferon gamma (IFN-γ)-stimulated macrophages. Aspartate promotes interleukin-1ß (IL-1ß) secretion in M1 macrophages. Mechanistically, aspartate boosts the activation of hypoxia-inducible factor-1α (HIF-1α) and inflammasome and increases the levels of metabolites in aspartate metabolism, such as asparagine. Interestingly, asparagine also accelerates the activation of cellular signaling pathways and promotes the production of inflammatory cytokines from macrophages. Moreover, aspartate supplementation augments the macrophage-mediated inflammatory responses in mice and piglets. These results uncover a previously uncharacterized role for aspartate metabolism in directing M1 macrophage polarization.


Subject(s)
Aspartic Acid/metabolism , Inflammasomes/physiology , Interleukin-1beta/biosynthesis , Macrophages, Peritoneal/immunology , Animals , Citrobacter rodentium , Colitis/immunology , Colitis/microbiology , Cytokines/blood , Enterobacteriaceae Infections/immunology , Female , Hypoxia-Inducible Factor 1, alpha Subunit , Interferon-gamma/pharmacology , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Macrophage Activation , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Swine
18.
Cell Rep ; 37(5): 109926, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731629

ABSTRACT

Interferon regulatory factor 3 (IRF3) is an essential transductor for initiation of many immune responses. Here, we show that lncRNA-ISIR directly binds IRF3 to promote its phosphorylation, dimerization, and nuclear translocation, along with enhanced target gene productions. In vivo lncRNA-ISIR deficiency results in reduced IFN production, uncontrolled viral replication, and increased mortality. The human homolog, AK131315, also binds IRF3 and promotes its activation. More important, AK131315 expression is positively correlated with type I interferon (IFN-I) level and severity in patients with lupus. Mechanistically, in resting cells, IRF3 is bound to suppressor protein Flightless-1 (Fli-1), which keeps its inactive state. Upon infection, IFN-I-induced lncRNA-ISIR binds IRF3 at DNA-binding domain in cytoplasm and removes Fli-1's association from IRF3, consequently facilitating IRF3 activation. Our results demonstrate that IFN-I-inducible lncRNA-ISIR feedback strengthens IRF3 activation by removing suppressive Fli-1 in immune responses, revealing a method of lncRNA-mediated modulation of transcription factor (TF) activation.


Subject(s)
Interferon Regulatory Factor-3/metabolism , Lupus Erythematosus, Systemic/metabolism , Macrophages, Peritoneal/metabolism , RNA, Long Noncoding/metabolism , Vesicular Stomatitis/metabolism , Animals , Case-Control Studies , Chlorocebus aethiops , Disease Models, Animal , Gene Silencing , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RAW 264.7 Cells , RNA, Long Noncoding/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Vero Cells , Vesicular Stomatitis/genetics , Vesicular Stomatitis/immunology , Vesicular Stomatitis/virology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/pathogenicity
19.
Bull Exp Biol Med ; 172(1): 42-45, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34796425

ABSTRACT

In cultures of peritoneal macrophages (MP) of male BALB/c mice infected with Mycobacterium tuberculosis from the BCG vaccine, the expression of CD1, CD14, CD25, CD30, CD35, and CD95 receptors was studied in vitro 3 months after infection. In MP cultures from intact and infected mice, mononuclear MP predominated (96 and 92%, respectively). Bi- and trinuclear MP in MP cultures from control and infected mice constituted 4 and 8.3% of all MP, respectively. In the cultures of both groups, no obvious correlations between the number of MP expressing CD-receptors and number of nuclei in these cells were found, but the expression of CD14 receptor was more often noted. In cultures from infected animals, hypertrophied MP and enhanced (by several times) expression of all CD-receptors were observed. The increase in the expression of CD-receptor can be determined by activation of plastic processes in hypertrophied MP (in epithelioid and in numerically insignificant polynuclear MP), which is due to the phenomenon of prolonged M. tuberculosis persistence in the vacuolar apparatus of these cells.


Subject(s)
Antigens, CD1/biosynthesis , Macrophages, Peritoneal/immunology , Mycobacterium tuberculosis/immunology , Receptors, Cytokine/biosynthesis , Tuberculosis/immunology , Animals , BCG Vaccine/immunology , Male , Mice , Mice, Inbred BALB C , Tuberculosis/pathology
20.
Immunity ; 54(11): 2578-2594.e5, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34717795

ABSTRACT

Peritoneal immune cells reside unanchored within the peritoneal fluid in homeostasis. Here, we examined the mechanisms that control bacterial infection in the peritoneum using a mouse model of abdominal sepsis following intraperitoneal Escherichia coli infection. Whole-mount immunofluorescence and confocal microscopy of the peritoneal wall and omentum revealed that large peritoneal macrophages (LPMs) rapidly cleared bacteria and adhered to the mesothelium, forming multilayered cellular aggregates composed by sequentially recruited LPMs, B1 cells, neutrophils, and monocyte-derived cells (moCs). The formation of resident macrophage aggregates (resMφ-aggregates) required LPMs and thrombin-dependent fibrin polymerization. E. coli infection triggered LPM pyroptosis and release of inflammatory mediators. Resolution of these potentially inflammatory aggregates required LPM-mediated recruitment of moCs, which were essential for fibrinolysis-mediated resMφ-aggregate disaggregation and the prevention of peritoneal overt inflammation. Thus, resMφ-aggregates provide a physical scaffold that enables the efficient control of peritoneal infection, with implications for antimicrobial immunity in other body cavities, such as the pleural cavity or brain ventricles.


Subject(s)
Bacterial Infections/etiology , Bacterial Infections/metabolism , Host-Pathogen Interactions/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Peritoneal Cavity/microbiology , Animals , Biomarkers , Cellular Microenvironment/immunology , Disease Models, Animal , Disease Susceptibility/immunology , Inflammation Mediators/metabolism , Mice , Peritonitis/etiology , Peritonitis/metabolism , Peritonitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...